2023考研数学中容易出哪些类型的证明题

在考研各科目中,很多考生认为数学科目难度比较大,不知道该如何着手准备,具体怎么规划、如何提高所需能力等。下面考研考研小编为大家整理了“2023考研数学中容易出哪些类型的证

明题”一文,希望能为大家带来一些帮助。

2023考研数学中容易出哪些类型的证明题

一、数列极限的证明

数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

二、微分中值定理的相关证明

微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理。

1.零点定理和介质定理;

2.微分中值定理;

包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3.微分中值定理;

积分中值定理的作用是为了去掉积分符号。

三、方程根的问题

包括方程根唯一和方程根的个数的讨论。

四、不等式的证明

不等式的证明题作为微分的应用经常出现在考研题中。利用函数的单调性证明不等式是不等式证明的基本方法,有时需要两次甚至三次连续使用该方法。其他方法可作为该方法的补充,辅助函数的构造仍是解决问题的关键。

五、定积分等式和不等式的证明

主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

六、积分与路径无关的五个等价条件

这一部分是数一的考试重点,最近几年没涉及到,所以要重点关注。

以上是小编为大家整理的“2023考研数学中容易出哪些类型的证明题”,希望能帮助大家更好的准备考研数学,通过不断的练习与总结,掌握重点,攻克难点。

发表评论

|京ICP备18012533号-270